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Abstract 
 
An ant colony meta-heuristic optimization method is used to solve the redundancy optimization 
problem for multi-state systems. A universal generating function technique is applied to evaluate 
system availability. The ant colony approach developed and tested in this paper has the advantage 
to allow elements with different parameters to be allocated in parallel.  

 

1. Introduction  

The redundancy optimization problem is a well known combinatorial optimization problem. In (Levitin et 
al., 1997), the authors applied a genetic algorithm to solve the problem. This paper uses an ant colony 
meta-heuristic optimization method. The system and its components have a range of performance levels 
from perfect functioning to complete failure. Redundant elements are included in order to achieve a 
desirable level of availability. The elements of the system are characterized by their cost, performance 
and availability. These elements are chosen from a list of products available on the market. The proposed 
meta-heuristic determines the minimal cost system configuration under availability constraints. During 
the optimization process, artificial ants will have to evaluate the availability of a given selected structure 
of the series-parallel system. To do this, a fast procedure of availability estimation is developed. This 
procedure is based on a modern mathematical technique: the z-transform or universal moment generating 
function which was introduced in (Ushakov, 1986). It was proven to be very effective for high dimension 
combinatorial problems. A good and extensive recent review of the literature can be found for example in 
(Ushakov, Levitin and Lisnianski, 2002) or (Lisnianski and Levitin, 2003). The developed method allows 
the availability function of reparable series-parallel MSS to be obtained using a straightforward numerical 
procedure. The paper is organized as follows. The ant system approach is summarized in section 2. In 
section 3, the proposed heuristic is presented 
 

2. The ant system approach  

Many researchers have shown that insect colonies behaviour can be seen as a natural model of collective 
problem solving. The analogy between the way ants look for food and combinatorial optimization 
problems has given rise to a new computational paradigm, which is called ant colony meta-heuristic. Ants 
lay down in some quantity an aromatic substance, known as pheromone, in their way to food. The 
pheromone quantity depends on the length of the path and the quality of the discovered food source. An 
ant chooses a specific path in correlation with the intensity of the pheromone. The pheromone trail 
evaporates over time if no more pheromone is laid down. Other ants can observe the pheromone trail and 
are attracted to follow it. Thus, the path will be marked again and will therefore attract more ants. The 
pheromone trail on paths leading to rich food sources close to the nest will be more frequented and will 
therefore grow faster. In that way, the best solution has more intensive pheromone and higher probability 
to be chosen. The described behaviour of real ant colonies can be used to solve combinatorial 
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optimization problems by simulation: artificial ants searching the solution space simulate real ants 
searching their environment. The objective values correspond to the quality of the food sources. The ant 
system approach associates pheromone trails to features of the solutions of a combinatorial problem, 
which can be seen as a kind of adaptive memory of the previous solutions. In order to demonstrate the ant 
system approach, Dorigo et al. (1996) apply it to the classical traveling salesman problem, asymmetric 
traveling salesman problem, quadratic assignment problem, and job-shop scheduling. Ant system shows 
very good results in each applied area. The ant system has also been applied with success to other 
combinatorial optimization problems. The ant system method has not yet been used in the redundancy 
optimization of multi-state systems.  

 

3. A solution approach to redundancy optimization for multi-state systems 

3.1 Problem formulation  

Let consider a series-parallel system containing n components Ci (i = 1, 2,�, n) in series. Every 
component Ci contains a number of different elements connected in parallel. For each component i, there 
are a number of element versions available in the market. For any given system component, different 
versions and number of elements may be chosen. For each component i, elements are characterized 
according to their version v by their cost (Civ), availability (Aiv) and performance (Σiv). The structure of 
system component i  can be defined by the numbers of parallel elements (of each version) ivk  for 

iVv ≤≤1 , where iV  is a number of versions available for element of type i. The entire system structure is 
defined by the vectors ki = { }

iivk  )Vv,ni( i≤≤≤≤ 11 . For a given set of vectors k1, k2,�, kn the total cost 
of the system can be calculated as:  
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The unfamiliar reader is referred to (Ushakov, 1986) or (Lisnianski and Levitin, 2003) for the universal 
moment generating function (UMGF) method, habitually used to estimate the availability of reparable 
multi-state systems. The multi-state system redundancy optimization problem can be formulated as 
follows: find the minimal cost system configuration k1, k2, �, kn that meets or exceeds the required 
availability A0. That is,  
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Subject to  A(k1, k2, �, kn, D, T) ≥ A0                                                (3) 

 

3.2  Solution method   

To apply the ACO meta-heuristic to a combinatorial optimization problem, it is convenient to represent 
the problem by a graph G = (ς, Λ), where ς are the nodes and Λ is the set of edges. To represent our ROP 
as such a graph, the set of nodes ς  is given by components and elements, and edges connect each 
component to its available elements. Some nodes are added to represent positions where additional 
component was not used. As in (Liang and Smith, 2001), these nodes are called blanks nodes and have 
attributes of zero. The obtained graph is partially connected. Ants cooperate by using indirect form of 
communication mediated by pheromone they deposit on the edges of the graph G while building 



 

 

solutions. Informally, our algorithm works as follows: m ants are initially positioned on a node 
representing a component. Each ant represents one possible structure of the entire system. This structure 
is represented by Ki elements in parallel for n different components. The Ki elements can be chosen in any 
combination from the Vi available type of elements. Each ant builds a feasible solution (called a tour) to 
the ROP problem by repeatedly applying a stochastic greedy rule, i.e., the state transition rule. While 
constructing its solution, an ant also modifies the amount of pheromone on the visited edges by applying 
the local updating rule. Once all ants have terminated their tour, the amount of pheromone on edges is 
modified again (by applying the global updating rule). Ants are guided, in building their tours, by both 
heuristic information (they prefer to choose �less expansive� edges), and by pheromone information. 
Naturally, an edge with a high amount of pheromone is a very desirable choice. The pheromone updating 
rules are designed so that they tend to give more pheromone to edges which should be visited by ants. At 
each step of the construction process, ants use problem-specific heuristic information (denoted by ηij) and 
pheromone trails (denoted by τij) to select Ki elements in each component. An ant positioned on node i 
(representing a component Ci) chooses the element j by applying the rule given by:  
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and J is a random variable selected according to the probability distribution given by:  
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where α and β are parameters that control the relative weight of the pheromone (τij) and the local heuristic 
(ηij), respectively;  ACi is the set of available element choices for component i; q is a random number 
uniformly distributed in [0 .. 1]; and q0 is a parameter (0 ≤ q0 ≤ 1).  
The parameter q0 determines the relative importance of exploitation versus exploration: every time an ant 
in node i has to choose an element j, it samples a random number 0 ≤ q ≤ 1. If q ≤ qo then the best edge, 
according to equation (4), is chosen (exploitation), otherwise an edge is chosen according to equation (5) 
(biased exploration). The state transition rule resulting from equations (4) and (5) is a pseudo-random-
proportional rule.  
The heuristic information used is ηij = 1/(1+cij) where cij represents the associated cost of element j for 
component i. In equation (5) we multiply the pheromone on edges by the corresponding heuristic value. 
In this way we favour the choice of edges which are weighted with smaller costs and which have a greater 
amount of pheromone. That is, elements with smaller cost have greater probability to be selected.  
Once all ants have built a complete system, pheromone trails are updated. Only the globally best ant (i.e., 
the ant which constructed the best design solution from the beginning of the trial) is allowed to deposit 
pheromone. A quantity of pheromone ∆τij is deposited a on each edge that the best ant has used. The 

quantity ∆τij is given by 1

bestTC
, where TCbest is the total cost of the design feasible solution constructed by 

the best ant. Therefore, the global updating rule is:  
 



 

 

1ij ij ij( ). .τ ρ τ ρ τ← − + ∆                                                                                                                                 (6) 
 
where 0 < ρ < 1 is the pheromone decay parameter representing the evaporation of trail.  
Global updating is intended to allocate a greater amount of pheromone to less expansive design solution. 
Equation (6) dictates that only those edges belonging to the globally best solution will receive 
reinforcement.  
While building a solution of the ROP problem of MSS, ants choose elements by visiting edges on the 
graph G, and change their pheromone level by applying the following local updating rule:  
 
 1ij ij o( ). .τ ρ τ ρ τ← − +                                                                                                                                 (7) 
 
where ρ is a coefficient such that (1-ρ) represents the evaporation of trail; and τo is the initial value of trail 
intensities.  
The application of the local updating rule, while edges are visited by ants, has the effect of lowering the 
pheromone on visited edges. The pheromone reduction is small but sufficient to lower the attractiveness 
(or desirability) of precedent edge. This favors the exploration of edges not yet visited, since the visited 
edges will be chosen with a lower probability by the other ants in the remaining steps of an iteration of the 
algorithm. Thus, by discouraging the next ant from choosing the same element during the same cycle, 
ants never converge to a common solution and premature convergence is avoided.  

Note finally that numerical results of the proposed approach are omitted for lack of space and can be 
found in (Nourelfath et al., 2003).  
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